Feeding Strategies to Reduce the Impact of Nitrogen on the Environment

William Chalupa and James D. Ferguson School of Veterinary Medicine University of Pennsylvania Kennett Square, PA 19348

INTRODUCTION

Data in table 1 shows that only about 30% of feed N is captured in the form of milk protein. The remaining 70% of feed N is lost as indigestible protein (feed and microbial cell walls) in feces and as urea in urine. These data are from a well managed herd that has a daily milk flow of about 85 lb/d from 900 Holsteins and 100 Jerseys. For Holsteins, actual milk production is close to the formulation levels shown in table 1. For Jerseys, average milk production during the past 12 months was 50 to 65 lb/d. Rations provide 5 to 15% more metabolizable protein (MP) than required, but this is necessary to meet amino acid (AA) requirements and because peak, heifer and mid-lactation groups are fed the same TMR. It is interesting that Jerseys are the most efficient in the capture of feed N in milk protein. In most cases, rations are providing adequate amounts of peptides to maximize growth of bacteria that ferment non fiber carbohydrates (NFC) but quantities of ruminal ammonia are 30 to 40% greater than needed.

The flow of N into milk vs manure can be regulated by ration formulation strategies and adjusted further by optimizing utilization of ruminal N by bacteria. Ration formulation strategies include feed ingredients used, level of NFC in rations and the level of MP provided by rations. Utilization of N by ruminal bacteria can be affected by the efficiency of ammonia uptake by rumen bacteria and by the efficiency of bacterial growth. In addition, flow of N into milk or manure is affected by the amount of N that is recycled to the rumen instead of excreted in urine.

In this report, we used the Net Carbohydrate and Protein System (Fox et al., 1992; Russell et al., 1992; Sniffen et al., 1992; O'Conner et al., 1992) to examine how strategies of ration formulation and how utilization of N by ruminal bacteria affect the flow of dietary N into milk and manure. In all simulations, rations were formulated under conditions of abundant ruminal ammonia (ruminal ammonia balance not constrained) and limited but adequate ruminal ammonia (ruminal ammonia balance constrained to 100% of requirements).

PROCEDURE

The Net Carbohydrate and Protein Model was modified to contain a N balance sheet (Ferguson et al., 1992) and an auto balancer (Boston and Chalupa, 1994). By using high cost dummy nutrients, the auto balancer always gives a solution, even if nutrient constraints cannot be met.

Rations were formulated using corn silage and alfalfa haylage as forage sources; ground corn and rumen bypass fat as sources of energy; soybean meal, corn gluten meal, blood meal and fish meal as protein ingredients; whole cotton seed and corn distillers as additional sources of protein, energy and fiber; and soybean hulls as a source of highly fermentable fiber.

Nutrients constrained included metabolizable energy (ME), MP, absorbed methionine, lysine and isoleucine, ruminal peptides, NDF, NFC, and fat. Ruminal ammonia balance either was not constrained or constrained at 100% of requirements.

Dry matter (DM) intake was set at 52 lb/d for a 1430 lb cow producing 100 lb/d milk with 3.7% fat and 3.1% milk crude protein.

Details relating to the effects of feed ingredients, digestive and metabolic factors on N utilization by lactating dairy cattle are in appendix table 1. Table 1. Nitrogen utilization in a commercial dairy

Stage of Lactation	Dry	Dry	Fresh	Peak	Peak	Heifer	Mid	Jersey
DIM	-60 to -21	-21to 0	0 to30	20 to 150	20 to 150	>120	<150	0 to 305
Milk (lb/d)	0	0	90	100	120	80	85	70
Met Prot Bal (g/d)	213	514	187	306	139	370	256	102
MP Bai (%Reg)	125	170	108	111	104	114	110	104
Rumen N balance (%)	Reg)							
Ammonia	116	102	128	140	141	140	145	139
Peptides	96	131	105	102	101	103	92	110
Nitrogen Balance (g/d)								
Intake	241	271	631	743	788	679	702	587
Milk	0	0	189	210	244	168	191	193
Milk (% Intake)	0	0	30	28	31	25	27	33
Fetus	25	25	0	0	0	0	27	0
Gain	1	1	0	0	0	6	0	2
Urine	95	133	215	273	269	268	255	197
Feces	120	110	225	257	273	235	253	194
Manure	215	235	440	530	542	503	508	391

Table 2. Effects of ingredients on nitrogen balance

		Ration								
	1	2	3	4						
NH, Constraint	None	!00%	None	:00%						
Ingredient (% DM)										
Corn Silage	33.80	33.80	11.30	11.30						
Alfalfa haylage	11.30	11.30	33.80	33.80						
Soybean hulls	1.70	12.10	0.00	12.10						
Ground corn	21.00	23.50	27.60	29.20						
Whole cottonseed	8.80	8.80	5.60	4.40						
Corn distillers	8.60	0.00	8.60	0.00						
Megalac	2.00	2.00	2.00	2.00						
Soybean meal	10.40	1.00	8.30	0.00						
Corn gluten meal	0.00	3.50	0.00	3.50						
Blood meal	0.00	1.20	0.00	0.90						
Fish meal	0.60	1.00	1.00	1.00						
Min Vit	1.80	1.80	1.80	1.80						
Intake (lb/d)	52	52	52	52						
Cost (S/d)	3.81	3.82	3.94	3.88						
N balance (g/d)										
Intake	680	606	735	653						
Milk	210	210	210	210						
Milk (% intake N)	31	35	29	32						
Urine	220	153	264	192						
Feces	247	240	258	248						
Manure	467	393	522	440						
Change										
NH ₃ Constraint ¹	(0)	(-74)	[0]	[-82]						
Forage Ratios ²	<u>(</u> ĵ;)	[0]	(+55)	+47						

1. NH3 constraint: (ration 1 vs ration 2); {ration 3 vs ration 4] 2. Forage ratios: (ration 1 vs ration 3); [ration 2 vs ration 4)

2			Ration			
	17	18	1	2	19	20
NFC (%)	36	36	39	39	42	42
Fermented Carbohydrate	(kg/d)					
NFC	7.22	7.12	7.65	7.65	8.18	. 8.11
Fiber	2.88	3.13	2.49	2.91	2.54	2.53
Total	10.11	10.24	10.10	10.56	10.72	10.65
Bacterial Growth (G Bacte	erial-N/G CHO F	ermented)				
Selected	0.40	0.40	0.40	0.40	0.40	0.40
Actual	0.39	0.38	0.38	0.38	0.38	0.38
NH, Constraint	None	1.00	None	1.00	None	1.00
Metabolizable Protein (kg	(d)			`		
Bacteria	1.47	1.42	1.46	1.49	1.53	1.50
Bypass	1.26	1.33	1.26	1.32	1.17	1.20
Total	2.73	2.75	2.72	2.81	2.70	2.71
N Balance (g/d)						
Intake	680	604	680	606	617	592
Milk	210	210	210	210	210	210
Milk (% N intake)	31	35	31	35	34	35
Urine	231	142	220	153	170	139
Feces	236	249	247	240	234	240
Manure	467	391	467	393	404	379
Change ¹	(0)	[0]	(0)	[+2]	(-63)	[-12]

Table 3. Effect of non fiber carbohydrate on nitrogen balance

1. (ration 17 vs rations 1 and 19); [ration 18 vs rations 2 and 20]

RESULTS AND DISCUSSION

Ration Formulation Strategies

Feed Ingredients. Rations were formulated with corn silage and alfalfa haylage at ratios of 3:1 or 1:3 with forage DM fixed at 45% (table 2). Rations contained constrained concentrations of NDF, eNDF, NFC and fat. Balances of absorbed methionine, lysine and isoleucine were 96 to 110% of requirements.

Corn silage contains more energy and less protein, especially soluble protein than alfalfa haylage. However, across both constraints of ruminal ammonia balance (none or 100%), there were only small differences in the ingredients selected. Consequently, ration crude protein (CP) was higher in rations with more alfalfa haylage. Most of the additional N consumed from rations containing more alfalfa haylage was soluble and excreted in urine. Thus, the percentage of dietary N captured as milk protein decreased.

On the other hand, constraining ruminal ammonia balance decreased the amounts of soybean meal and corn distillers selected and forced the selection of corn gluten meal and blood meal. Ration CP decreased so that less N was excreted and a greater proportion of dietary N was captured in milk.

Our simulations showed that N excretion was reduced 70 to 80 g/d (10%) by using grain forages like corn silage and alfalfa at 3:1 instead of 1:3. Constraining rumen ammonia balance reduced N excretion 70 to 80 g/d (15%). In these strategies, high bypass proteins with AA patterns compatible with the animal's requirements, highly digestible sources of fiber like soybean hulls and ruminally inert fat are needed to maintain optimum nutrient profiles.

Concentration of Non Fiber Carbohydrate. Rations were formulated at 36, 39 and 42% NFC (table 3). Higher levels of NFC were achieved by replacing soybean hulls with ground corn and by reducing soybean meal. With few exceptions, nutrients were within constrained levels.

Increasing dietary NFC had interesting implications on N utilization. Because NFC replaced fermentable fiber, total fermentable carbohydrate only increased slightly so that increases in MP provided by rumen bacteria were small. Manure N was decreased only when rations contained 42% NFC. Reductions were 63 g/d (15%) when ruminal ammonia balance was abundant but only 12 g/d (5%) when ruminal ammonia balance was constrained.

Because higher levels of NFC can increase the risk of acidosis, this strategy of reducing manure N must be applied cautiously.

Level of Metabolizable Protein. Rations were formulated to provide 95, 100 and 105% of required MP (table 4). Increased MP was achieved by higher ration concentrations of CP that were more resistant to ruminal degradation. Rations formulated to provide 95% of required MP provided inadequate amounts of absorbed lysine and isoleucine. Alleviating these deficits without increasing MP requires rumen protected AA.

Supply of MP had a large impact on manure N and the capture of dietary N in milk. Under conditions of unconstrained ruminal ammonia balance, decreasing MP to 95% of that required decreased N in feces and urine 94 g/d (20%). Increasing supply of MP to 105% of required increased manure N 38 g/d (8%). Although the magnitude was not as large, similar changes were observed when ruminal ammonia balance was constrained.

Ferguson and Chalupa (1994) showed that adjusting the supply of MP above and below requirements can have greater impacts on manure N and the proportion of dietary N that appears in milk than those predicted in our simulations. Especially interesting was the observation that cows fed a ration with 15% CP supplemented with rumen protected methionine and lysine produced milk with the same concentration of casein as cows fed a ration with 19% CP.

Table 4. Effect of metabolizable protein supply on nitrogen balance

			Ration			
	9	10	1	2	11	12
Metabol Prot (% Reg)	95	95	100	100	105	105
Bacterial Growth (G Bacteri	al-N/G CHO F	ermented)				
Selected	0.40	0.40	0.40	0.40	0.40	0.40
Actual	0.37	0.36	0.38	0.38	0.39	0.37
NH ₂ Constraint	None	100%	None	100%	None	100%
Metabolizable Protein (kg/d)						
Bacteria	1.47	1.45	1.46	1.49	1.42	1.42
Bypass	1.11	1.14	1.26	1.32	1.43	1.43
Total	2.58	2.59	2.72	2.81	2.86	2.86
N Balance (g/d)						
Intake	585	559	680	606	718	627
Milk	210	210	210	210	210	210
Milk (% N Intake)	36	38	31	35	29	33
Urine	142	111	220	153	257	162
Feces	231	235	247	240	248	251
Manure	373	346	467	393	505	413
Change ¹	(-94)	[-47]	(0)	101	(+38)	[+20]

1. (ration 1 vs rations and 9 and 11), (ration 2 vs rations 10 and 12)

			Ration			
	5	6	1	2	7	8
Bacterial-N/Rumen-N	0.80	0.80	0.90	0.90	1.00	1.00
NH ₃ Constraint	None	100%	None	100%	None	. 100%
Metabolizable Protein (kg/d)						
Bacteria	1.46	1.45	1.46	1.49	1.46	1.45
Bypass	1.26	1.29	1.26	1.32	1.26	1.29
Total	2.72	2.73	2.72	2.81	2.72	2.74
N Balance (g/d)						
Intake	683	631	680	606	680	596
Milk	210	210	210	210	210	210
Milk (% N Intake)	31	33	31	35	31	35
Urine	222	165	220	153	220	131
Feces	248	253	247	240	247	252
Manure	470	418	467	393	467	383
Change ¹	(0)	[0]	(-3)	[-25]	(-3)	[-84]

Table 5. Effect of ammonia uptake by ruminal nitrogen on nitrogen balance

1. (ration 5 vs rations 1 and 7); [ration 6 vs rations 2 and 8]

Utilization of Nitrogen by Ruminal Bacteria

Bacteria must be provided with nitrogenous nutrients that are derived from dietary N degraded in the rumen and from metabolic urea recycled to the rumen. Hoover and Miller (1991) summarized data that shows ruminal digestion of carbohydrates and the efficiency of bacterial growth are functions of degraded intake protein.

Efficiency of Ammonia Uptake by Rumen Bacteria. Rations were formulated with Bacterial:N/Rumen:NH3-N set at .80, .90 and 1.00 (table 5). Overall, nutrients were within constrained ranges.

When the supply of ruminal ammonia was abundant (ammonia balance not constrained) increasing the efficiency of ammonia uptake had no impact on N intake, excretion, or capture in milk.

Increasing the efficiency of ammonia uptake under conditions of limited ruminal ammonia (ammonia balance constrained to 100%) decreased manure N substantially and increased the capture of dietary N in milk. This occurred because when ruminal bacteria are more efficient in utilizing ammonia, less ruminally degraded N is needed.

Because mixed and pure cultures of rumen bacteria can scavenge ammonia from low

concentration environments (Satter, 1980; Schaefer et al., 1980), NRC (1985) set the efficiency at 90%. Even though our simulations showed improvements in N economy when efficiency was set at 100%, revising ration formulation programs to this efficiency is not advisable because of the risk of decreasing microbial growth. On the other hand, when ruminal ammonia exceeds microbial requirements, uptake efficiences decrease and excretion of dietary N in urine increases.

Efficiency of Bacterial Growth. Efficiency of bacterial growth (g bacterial-N/kg carbohydrate fermented) was set at 35, 40 and 45 (table 6). Again nutrients were within constrained ranges.

As expected, increasing efficiency increased microbial protein yield and decreased the amount of bypass protein needed. These adjustments occurred regardless of the constraint placed on ruminal ammonia balance.

Impacts upon N utilization were interesting. Increasing bacterial growth increases the amount of dietary N that cycled through ruminal bacteria. However, cycling dietary N through ruminal bacteria incurs losses because not all bacterial N is metabolically nutritious. About 15% of bacterial N is in the form of nucleic acids which are absorbed and excreted in urine. Twenty five percent of bacterial N is in cell walls, which are

			Ratio	a		
-	13	14	1	2	15	16
Bacterial Growth (G Bacterial-	N/G CHO	Fermented)				
Selected	0.35	0.35	0.40	0.40	0.45	0.45
Actual	0.34	0.31	0.38	0.38	0.42	0.42
NH, Constraint	None	100%	None	100%	None	100%
Metabolizable Protein (kg/d)						
Bacteria	1.30	1.26	1.46	1.49	1.62	1.62
Bypass	1.40	1.45	1.26	1.32	1.12	1.13
Total	2.70	2.71	2.72	2.81	2.74	2.74
N Balance (g/d)						
Intake	713	600	680	606	630	622
Milk	210	210	210	210	210	210
Milk (% N Intake)	31	33	31	35	31	35
Urine	266	160	220	153	156	148
Feces	234	226	247	240	261	261
Manure	500	386	467	393	417	409
Change ¹	(0)	[-0]	(-33)	[+7]	(-83)	[+23]

Table 6. Effect of bacterial growth efficiency on nitrogen balance

1. Ration 13 vs rations 1 and 15); [ration 14 vs rations 2 and 16]

not digested in the intestine, and appears as a fecal loss. As bacterial growth efficiency increased, urine N decreased but fecal N increased. Under conditions of abundant ruminal ammonia, the decrease in urine N excretion was greater than the increase in fecal N. This occurred because more ruminal ammonia was captured in bacteria enabling ration CP, primarily the ruminal degradable fraction, to decrease. Consequently, N intake decreased and more dietary N was captured in milk. Under conditions of limited ruminal ammonia, the decrease in urinary N was less than the increase in fecal N. This occurred because although more ruminal N was required, ration CP remained constant but the ruminally degraded fraction, increased. Thus, manure N increased and a smaller proportion of dietary N was transferred to milk.

Nitrogen Recycled to the Rumen

Modeling the impact of N recycling on nitrogen utilization requires development of improved equations to describe the process.

NRC (1985, 1989) describes N recycling as a function of N intake. However, Van Soest (1994) showed that the amount of urea recycled to the rumen is relatively independent of dietary N. Rather, the amount of N recycled to the rumen

depends upon the metabolic urea pool, which is derived from rumen excess N and N arising from the inefficiencies of protein (amino acid) utilization, as well as N arising from MP in excess of production requirements. Because the size of the urea pool in the body tends to be constant, excess metabolic urea is either recycled to the rumen or excreted in urine. Identification of mechanisms that control disposal of metabolic urea could allow the rumen system to be a utilizer rather than a generator of N.

CONCLUSIONS

Information on N utilization on a well managed commercial dairy and results of the modeling exercises revealed several key points regarding the role of lactating dairy cattle in environmental N pollution.

1. Manure N was 350 to 550 g/d. Predictions based on ASAE (1991) and USDA-SCS (1992) standards were 130 to 150 g/d. Differences are mainly the result of higher milk production in our study.

2. Thirty to 35% of dietary N was captured in the form of milk protein so that manure N was 65 to 70% of dietary N. Under Dutch feeding regimens

(Tamminga, 1990), 75 to 85% of ingested N is excreted in feces and urine so that only 15 to 25% of dietary N appears in milk.

3. Variations in N intake and the flow of dietary N to manure and milk shows that ration balancing offers opportunities to reduce the impact of N from dairy cows on the environment.

4. Simply constraining the balance of ruminal ammonia decreases manure N substantially. However, deficiencies of ruminal N must be avoided.

5. Ration formulation strategies primarily affect the amount of N excreted in urine.

6. Cycling dietary N through ruminal bacteria incurs losses in the form of nonnutritious nucleic acid N and in the form of indigestible cell wall N.

7. Reducing N excretion must be evaluated in terms of meeting nutrient requirements in the rumen and at the tissue level of metabolism so that productivity, animal health and profitability are not compromised.

REFERENCES

ASAE Standards. 1991. Manure production and characteristics. 38th ed. ASAE, St Joseph MI.

Boston, R. and W. Chalupa. 1994. Unpublished Information. Univ. Pennsylvania, Kennett Square.

Ferguson, J.D. and W. Chalupa. 1994. The effect of inclusion of rumen protected methionine and lysine in low protein dairy rations. J. Dairy Sci. 77(Suppl. 1):92.

Ferguson, J.D. W. Chalupa, C.J. Sniffen, D.G. Fox and P.J. Van Soest. 1992. A model to predict nitrogen excretion by lactating dairy cattle. J. Dairy Sci.74(Suppl. 1):175.

Fox, D.G., C.J. Sniffen, J.D. O'Connor, J.B. Russell and P.J. Van Soest. 1992. A net carbohydrate and protein system for evaluating cattle diets. III. Cattle requirements and diet adequacy. J. Anim. Sci.70:3578.

Hoover, W.H and T.K. Miller.1991. Rumen digestive physiology and microbial ecology. Page 311 in Dairy nutrition management. C.J. Sniffen and T. H. Herdt, ed. Veterinary Clinics of North America vol.7. W.B. Saunders Co., Philadelphia.

NRC. 1989. Nutrient Requirements of Dairy Cattle. 6th Edition. Natl. Acad. Sci., Washington, DC.

NRC. 1985. Nitrogen Usage in Ruminants. Natl. Acad. Sci., Washington, DC.

O' Connor, J.D., C.J. Sniffen, D.G. Fox and W. Chalupa. 1993. IV. Predicting amino acid adequacy. J. Anim. Sci. 71:1298.

Russell, J.B., J.D. O'Connor, D.G. Fox, P.J. Van Soest and C.J. Sniffen 1992. A net carbohydrate and protein system for evaluating cattle diets. I. Ruminal Fermentation. J. Anim. Sci. 70:3551.

Satter, L.D. 1980. A Metabolizable protein system keyed to ruminal ammonia concentration-The Wisconsin system. Page 245 in Protein requirements for cattle. F.N. Owens, ed. Oklahoma State Univ., Stillwater.

Schaefer, D.M., C.L. Davis and M.P. Bryant. 1980. Ammonia saturation constants for predominant species of rumen bacteria. J. Dairy Sci. 63:1248.

Sniffen, C.J. J.D. O'Connor, P.J. Van Soest, D.G. Fox and J.B. Russell. 1992. A net carbohydrate and protein system for evaluating cattle diets. II.. Carbohydrate and protein availability. J. Anim. Sci. 70:3562.

Tamminga, S. 1990. Nutrient management of dairy cows as a contribution to pollution control. J. Dairy Sci. 75:345.

Van Soest, P.J. 1994. Nutritional Ecology of the Ruminant. Cornell Univ. Press, Ithaca.

USDA-SCS. 1992. Agricultural waste characteristics. Agricultural Waste Management Field Handbook. Washington, DC.

Objective	Standa not con constra	rd ration strained ined to 1	or	HI,	Efficien	ncy of NI hacteria	13 uptal	ie by	Metab Requir	Metabolizable protein (% Efficier Requirement) (g N/g !			Efficiency of bacterial growth (g N/g CHO Fermented)			NFC (% DM)				
Ration	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Comparison	2	1	4	3		2		2		2	1	2		2		2		2		2
Protein																				
Crude (%CP)	18.0	16.0	19.5	17.3	18.1	16.7	18.0	15.8	15.5	14.8	19.0	16.6	18.9	15.9	16.7	16.5	18.0	16.0	16.4	15.7
Bypass (%CP)	38.4	42.8	37.5	39.9	38.2	42.8	38.4	45.0	37.6	41.1	39.7	46.8	39.8	47.8	37.9	38.6	36.4	45.2	37.7	41.2
Soluble (%CP)	32.6	32.3	39.4	40.7	32.4	32.1	32.6	32.3	34.5	34.5	30.7	30.5	31.1	31.2	34.0	34.1	33.3	32.5	33.2	32.9
Metabol Supply (kg/d)																				-
Bacteria	1.46	1.49	1.44	1.47	1.46	1.45	1.46	1.45	1.47	1.45	1.45	1.42	1.30	1.26	1.62	1.62	1.47	1.42	1.53	1.50
Bypass	1.26	1.32	1.27	1.25	1.26	1.29	1.26	1.29	1.11	1.14	1.39	1.43	1.40	1.45	1.12	1.13	1.26	1.33	1.17	1.20
Total	2.72	2.81	2.71	2.72	2.72	2.73	2.72	2.74	2.58	2.59	2.85	2.86	2.70	2.71	2.74	2.74	2.73	2.75	2.70	2.71
Metabol Req (kg/d)	2.72	2.73	2.71	2.72	2.72	2.73	2.72	2.74	2.72	2.73	2.71	2.73	2.71	2.71	2.74	2.74	2.73	2.75	2.70	2.71
Balance	0.00	0.08	0.00	0.00	0.00	0.00	0.00	0.00	14	14	0.13	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Lact Efficiency	65	62	65	65	65	65	65	65	70	70	61	61	65	65	65	65	65	65	65	65
Rumen N Bal (% Req)																			
Ammonia	140	100	166	117	125	100	155	100	113	100	151	100	178	116	103	100	143	102	114	100
Peptides	119_	91	105	79	120	97		84	99	85	125	87	138	88		95	128	82	101	82
NDF (%DM)	32.1	34.4	30.3	33.1	32.1	33.4	32.1	34.6	34.7	35.3	31.1	33.9	31.1	34.8	33.6	33.8	34.4	36.8	31.2	31.6
eNDF (%DM)	20.3	20.2	20.1	19.4	20.3	20.3	20.3	19.9	18.3	18.3	20.3	19.3	20.3	17.1	20.3	20.3	20.1	19.3	20.0	20.3
NFC (%DM)	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	39.0	36.0	36.0	42.0	42.0
Fat (%DM)	6.8	6.0	6.5	5.5	6.8	6.9	6.8	6.6	6.1	6.4	6.8	6.4	6.7	5.8	6.8	6.8	6.7	6.9	6.0	6.4
ME Bal (Mcal/d)	0.1	-1.3	-1.0	-1.9	0.0	-0.4	-0.2	-0.9	0.2	0.1	0.10	0.8	0.00	0.00	-0.7	-0.8	0.0	-0.4	0.0	0.0
BWC (lh/d)	-0.0	-0.2	-0.2	-0.3	0.0	-0.1	=0.0	-0.1	0.03	0.02		-0.1	0.00	0.00	-0.1	-0.1	0.0	0.1	0.0	0.0
Amino Acid Balance ²																				
Met (g/d)	0	5	1	5	0	3	0	3	0	2	3	6	0	-1	1	2	1	2	3	5
Met (%Reg)	100	110	102	100	100	95	102	96	106	100	104	110	100	99	102	103	100	103	105	109
L.ys (g/d)	3	7	3	0	0	-9	3	-3	-12	-14	1	3	-5	19	4	4	7	6	0	-5
Lys (%Req)	102	104	102	100	100	95	102	96	93	92	100	102	97	111	103	103	104	104	100	97
lle (g/d)	-3	-3	-1	-3	-3	-3	-3	-8	-6	-7	4	-4		-23	-1	-1	0	-13	0	-1
Lile (%Reg)	26	98	99	98	98	97	98	91	95	25	103	97	97	82	99	99	100	91	100	99

Appendix Table 1. Effects of ingredients, digestive and metabolic factors on nitrogen utilization of lactating dairy cattle

1. 1430 lb cow producing 100 lb/d milk with 3.7% fat and 3.1% crude protein. 2. Other amino acids were supplied in excess.

Objective	Standa not con constra	rd ration strained lined to	ns with N or 100%	111 ,	Efficiency of NII3 uptake by rumen bacteria				Metabolizable protein				Efficiency of bacterial growth (g N/g CHO Fermented)				NFC (% DM)			
Ration	11	2	3	4	5 6 7 8			9 10 11 12		13 14 15 16			17 18 19 20							
Comparison	2	T	4	3		2		2	1	2	1	2		2	1	2		2		2
Constraint																				
Rumen NH3 Bal	NC	100	NC	100	NC	100	NC	100	NC	100	NC	100	NC	100	NC	100	NC	100	NC	100
Corn Sil:A Hge	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1	3:1
NFC (%)	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	42	39	42
Bact-N/Ru-NII3	.90	.90	.90	.90	.80	.80	1.0	1.0	.90	.90	.90	.90	.90	.90	.90	.90	00	.90	.90	.90
Bact Efficiency													-			_				
Selected	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.40	.35	.35	.45	.45	.40	.40	.40	.40
Actual	.38	.38	.39	.38	.37	.38	.38	.38	.37	.36	.39	.37	.34	.31	.42	.42	.39	.38	.38	.38
Met Pro (% reg)	100	100	100	100	100	100	100	100	- 95	95	105	105	100	100	100	100	100	100	100	1001
Ingred (%DM)		· · · · ·																		
Corn silage	33.8	33.8	11.3	11.3	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8	33.8
Alf haylage	11.3	11.3	33.8	33.8	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3
Soybean hulls	1.7	12.1	0.0	12.1	1.7	4.3	1.7	8.5	15.4	15.6	0.0	8.6	0.9	17.1	4.3	4.5	10.7	14.5	5.6	4.9
Ground corn	21.0	23.5	27.6	29.2	21.0	22.9	21.0	23.8	21.5	22.6	20.9	23.5	21.1	23.3	21.6	22.0	15.1	19.0	26.5	27.8
W cottonseed	8.8	8.8	5.6	4.4	8.8	8.8	8.8	8.1	5.3	5.3	8.8	6.9	8.8	3.1	8.8	8.8	8.8	7.4	8.1	8.5
Corn distillers	8.6	0.0	8.6	0.0	8.5	8.6	8.6	6.4	0.0	1.3	8.6	6.2	7.5	1.0	8.6	8.6	2.8	4.3	1.6	3.5
Megalac	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.8	2.8	2.0	2.0	2.0	2.5	2.0	2.0	2:.8	2.8	2.0	2.0
Soybean meal	10.4	1.0	8.3	0.0	10.3	3.3	10.4	0.0	4.6	1.0	10.4	0.0	10.4	0.0	7.8	6.9	10.4	0.0	6.8	2.8
Corn glut meat	0.0	3.5	0.0	3.5	0.6	2.2	0.0	2.4	3.5	3.5	2.3	3.5	1.4	1.4	0.0	0.0	1.5	2.2	2.2	2.6
Blood meal	0.0	1.2	0.0	0.9	0.0	0.0	0.0	0.9	0.0	0.0	0.0	1.4	0.0	3.7	0.0	0.0	0.0	1.9	0.1	0.0
Fish meal	1.6	1.0	1.0	1.0	0.2	1.0	0.6	1.0	0.0	1.0	0.1	1.0	1.0	1.0	0.0	0.3	1.0	1.0	0.2	1.0
Vit Min	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.1	1.8	1.8	1.8	1.8
Cost (\$/d)	3.81	3.82	3.94	3.88	3.80	3.81	3.81	3.78	3.77	3.79	3.92	3.89	3.95	3.95	3.66	3.6	3.98	3.95	3.71	3.75
N Balance (g/d)																				
Intake	680	606	735	653	683	631	680	596	585	559	718	627	713	600	630	62.	680	604	617	592
Milk	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210	210
Urine	220	153	264	192	222	165	220	131	142	111	257	162	266	160	156	148	231	142	170	139
Feces	2.17	240	258	248	248	253	247	252	231	235	248	251	234	226	261	26	236	249	234	240
Manure	467	393	522	440	470	418	467	383	373	346	505	413	500	386	417	405	467	391	404	379
BWC. Scurf	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		3	3	3	3

Appendix Table 1. Effects of ingredients, digestive and metabolic factors on nitrogen utilization of lactating dairy cattle

1. 1430 lb cow producing 100 lb/d milk with 3.7% fat and 3.1% crude protein.